#include <iostream>
#include <sstream>
#include <unordered_map>
#include <vector>
using namespace std;
int main() {
string input;
getline(cin, input); // Read the entire line of input
unordered_map<string, int> nameCount; // To store the count of each name
stringstream ss(input);
string name;
// Count the occurrences of each name
while (ss >> name) {
nameCount[name]++;
}
// Store names that appear only once
vector<string> uniqueNames;
for (const auto& pair : nameCount) {
if (pair.second == 1) {
uniqueNames.push_back(pair.first);
}
}
// Output the names that appear only once
for (const string& uniqueName : uniqueNames) {
cout << uniqueName << " ";
}
return 0;
}
I2luY2x1ZGUgPGlvc3RyZWFtPgojaW5jbHVkZSA8c3N0cmVhbT4KI2luY2x1ZGUgPHVub3JkZXJlZF9tYXA+CiNpbmNsdWRlIDx2ZWN0b3I+CnVzaW5nIG5hbWVzcGFjZSBzdGQ7CgppbnQgbWFpbigpIHsKICAgIHN0cmluZyBpbnB1dDsKICAgIGdldGxpbmUoY2luLCBpbnB1dCk7IC8vIFJlYWQgdGhlIGVudGlyZSBsaW5lIG9mIGlucHV0CgogICAgdW5vcmRlcmVkX21hcDxzdHJpbmcsIGludD4gbmFtZUNvdW50OyAvLyBUbyBzdG9yZSB0aGUgY291bnQgb2YgZWFjaCBuYW1lCiAgICBzdHJpbmdzdHJlYW0gc3MoaW5wdXQpOwogICAgc3RyaW5nIG5hbWU7CgogICAgLy8gQ291bnQgdGhlIG9jY3VycmVuY2VzIG9mIGVhY2ggbmFtZQogICAgd2hpbGUgKHNzID4+IG5hbWUpIHsKICAgICAgICBuYW1lQ291bnRbbmFtZV0rKzsKICAgIH0KCiAgICAvLyBTdG9yZSBuYW1lcyB0aGF0IGFwcGVhciBvbmx5IG9uY2UKICAgIHZlY3RvcjxzdHJpbmc+IHVuaXF1ZU5hbWVzOwogICAgZm9yIChjb25zdCBhdXRvJiBwYWlyIDogbmFtZUNvdW50KSB7CiAgICAgICAgaWYgKHBhaXIuc2Vjb25kID09IDEpIHsKICAgICAgICAgICAgdW5pcXVlTmFtZXMucHVzaF9iYWNrKHBhaXIuZmlyc3QpOwogICAgICAgIH0KICAgIH0KCiAgICAvLyBPdXRwdXQgdGhlIG5hbWVzIHRoYXQgYXBwZWFyIG9ubHkgb25jZQogICAgZm9yIChjb25zdCBzdHJpbmcmIHVuaXF1ZU5hbWUgOiB1bmlxdWVOYW1lcykgewogICAgICAgIGNvdXQgPDwgdW5pcXVlTmFtZSA8PCAiICI7CiAgICB9CgogICAgcmV0dXJuIDA7Cn0K
VmVyaWZPcmQgVmVyaWZEaWZlcml0ZSBWZXJpZkVnYWxlIExpbWl0ZSBBZmlzYXJlRGl2aXpvcmlDb211bmkgcHJvZF9waSBQbG9waSBSZXN0dXJpIEdlbk1hdCBHZW5NYXQ2IENpZnJlWmVjaW1hbGUgRm9ybXVsYTEgQ29hZGEyIFptZXUgYmFsYXVyIFBhdHJhdE1hZ2ljNSBUaW1wMSBCaXNlY3RvYXJlMSBJbmFsdGltaTIgTXVsdGltZSBHYXVzcyBleHBhdHIgVmFyc3RhIHR1bmVsMiBwYWwgUHJvZE1heCBDcnVjZSBjYXRlM2NpZnJlIHBhcmFsZWxlMSBDb3N1cmkgVHJpdW5naGk1IEdlbk1hdDE2IEdlbk1hdDE1IEdlbk1hdDE0IEdlbk1hdDEzIEdlbk1hdDEyIEdlbk1hdDExIEdlbk1hdDEwIEdlbk1hdDggTUNoZW5hciBEb2RlbCBtYXhfcGF0cmF0IEdlbk1hdDUgR2VuTWF0NCBHZW5NYXQzIEdlbk1hdDIgTWF4QXAgTWF0cmljZTEwIE9yZExpbiBHZW5NYXQxIFBlcm1Db2wgU2Vjdk1heCBIYWxmU29ydDIgTnJQcmltZSBTdW1hTGluaWkxIFN1bWFMaW5paSBTdW1hUGFyZTIgTnVtYXJhcmU4IGlubG9jdWlyZSBTb3J0U0QgSW5hbHRpbWkgUHJpbU1heE1pbiBTdW1EaXYgT2dsaW5kaXQ0IFNvcnRhcmUgY21tZGM1IEZ1cm5pY2ExIEZvcnRhIFBlcmVjaGkgc3VtX21heDkgc3VtX21pbjkgUGFySW1wYXIyIFN1bWUyIGtzIERlYWwgcGFsaW5kcm9tNCBPWk4gVHJpdW5naGl1cmkyIFBlcm11dGFyZSBtYXhzaW0gUGVybUNpcmMgUGFsWFhMIEludGVydmFsMyBTdW1lIERpdml6b3JpNiBwcGRwIFByaW1hIGNpZnJhIENpZnJlMiBJbmNDaWZQYXJlIFZlY2luaSBzaXJtYXhpbSBwMTBfMTAgQ29uc3RyMyBDb25zdHIxIE1heE1pbjEgc3RlcmdlcmUgc3RlcmdlcmUyIGluc2VyYXJlMyBTb3J0UHJpbWUgU29ydDEwIEFyaGl0ZWN0dXJhIFNvcnRNYXggU3VtYVBhcmUxIHBhcml0YXRlXzkgU3VtTm90TWluTWF4IEFYWVogTGFzZXJlIFNjaGkgQ29tcGFyIFBhdHJhdDIgU3VtYSBEaXZpem9yaWxvciBQYXJpIFByaWV0ZW5lIGNpZnJlMjMgdGFiZWwgR3J1cGUgQ2lmcmFNYXhpbWEyIE9nbGluZGl0MyBQcmltZTIgUHJpbWUzIFVybWF0b3J1bCBwcmltIENpZnJlMTYgT2dsaW5kaXRlX0lYIEJ1bmUgQ2lmcmFrIENpZkJpbiB2ZXNlbENpZnJhIENNTURDX0NNTU1DIDJtYXhpbSAzbWluaW1lIEVnYWxlT2dsaW5kaXQgVmVyaWZQYXJpdGF0ZTIgVmVyaWZQYXJpdGF0ZTEgVmVyaWZpY2FyZU9yZG9uYXQgTnVtYXJhcmVQZXJlY2hpMiBDb25zdHIyIE51bWFyYXJlUGVyZWNoaTEgQ2lmcmUyMSBDaWZyZTE3IENpZnJlMjAgTnVtYXJhcmU1IE51bWFyYXJlRGl2IE51bWFyYXJlU0QgQ2xhZGlyaTEgTWFjYXJhIEVhc3lQb3cgVGVtcGx1IFNlY3ZlbnRlMiBBTU0gZHJlcHRjIFRvcnRPIHN1bV9jb25zX2ltcGFyZSBQc2V1ZG9QZXJmZWN0IGNpZm1pZCBDaWZNYXhNaW4gVmVyaWZQYXJlIEV4aXN0YUltcGFyZSBFeGlzdGFQcmltZSBWZXJpZk5yUGFyQ2lmcmUgU3VtRGl2T2dsIElubG9jdWlyZTUgVmVyaWZNdWx0aXBsdSBBbHRlcm5hbnRhIFNlY3ZLIEdyb3BpIFByYWppdHVyaSBhZmlzZSBUZXJlbkNhc2FfbG93IENoZW5hciBEaWFnb25hbGUxIERpYWdvbmFsZSBDb3ZvYXJlIEVyb3ppdW5lIFNwaXJhbGEgZmlibzAgRmlib25hY2NpIEdlbmVyYWxpemF0IEZpYm9uYWNjaTEgTnVtZXJlMSBDaWZGcmVjdiBFcmF0b3N0ZW5lMiBDaWZyZU9yZCBQYXJlSW1wYXJlIFVuaWNlIENhdXRhcmUgQmluYXJhIENpcmVzZTEgRGlmZjJkQXJyYXlzIFBhcmVTb3J0IEhhbGZTb3J0IHNvcnRNaW5NYXggT3Jkb25hcmUgaW5zZXJhcmVJbmFpbnRlIGluc2VyYXJlRHVwYSBpbnNlcmFyZSBzdGVyZ2VyZTEgU3RlcmdlcmVfRWxlbWVudCBQYXJJbXBhciBDb25zdHIgTnVtYXJhcmU3IElubG9jdWlyZTIgQXBhcml0aWkyIHByb2R1c3ByaW1lbGVkb3VhY2lmcmUgU3VtYTIgTnVtYXJhcmUyIHZlc2VsNCB2ZXJucmltcGRpdiBTdW1hIExpcHNhIFBhcml0YXRlMSBWZXJpZlByaW0gVGVyZW4gTWFyaWEgZGlzdGFudGFfbWF4aW1hIGlubG9jdWlyZV9tYXggVHJhbnNmIE51bWVyZTYgRWxpbUNpZiBDb250cm9sIFByZWx1Y3JhcmkgY2lmcmUgTWluMkNpZiBNYXhEaXZLIFRpbXAgTnVtYXJQZXJmZWN0IERpdml6b3JpNyBBbWJ1c2NhZGEgVGFuIG5yZGl2MSBjb2xpbmEgQnVsZXRpbiBDZXJjdXJpIGNpZm1heDMgU3VtUHJvZCBTdW1hIERpdml6b3JpbG9yIEltcGFyaSBOdW1hcnVsIERpdml6b3JpbG9yIFBhcmkgRGl2aXpvcmlpIE9nbGluZGl0dWx1aSBOdW1hcnVsIGRlIGRpdml6b3JpIFN1bWEgRGl2aXpvcmkgQ2lmcmVDb211bmUgbWVkaWUgQ2lmRGl2IFN1bWExIGlzb3NjZWwgQWNlbGFzaU51bWFyIFVsdGltdWxQYXIgUHJvZHVzTWF4aW0gTWFqb3JpdGFyIFVsdGltZWxlSW1wYXJlIEZhY3RvcmlhbDMgTnVtZXJlMTQgc3VtcHJvZG1heDMgMnByaW0gUG96TWluTWF4IElubG9jdWlyZTYgZWdhbGUgRmlib1ZlcmlmIEFmaXNhcmVNaW5NYXggTnVtYXJhcmU2IE1pbk1heDAgQWZpc2FyZTEgQWZpc2FyZSBBZmlzYXJlMCBCb21ib2FuZTEgQ2F0ZUltcGFyZSBzdW1hX24gTnVtZXJlIFB1dGVyaWxlTHVpTiBNaW5jaXVuYSBGaWJvbmFjY2kgQXBhcml0aWkgVWx0aW1hQ2lmcmFQYXJhIGNpZnBhcmNpZmltcCBPZ2xpbmRpdCBzdW1jaWZucmNpZiBjbW1rIG1pbmd4IENpZnJhSW1wYXJhTWF4aW1hIE5pY2VOdW1iZXJzIGNpZm1heGltcCBjbW1jcCBzdGVyZ2VaZXJvdXJpIG1heDNjaWYgQ2lmcmFNYXhpbWEgTnVtYXJ1bERlQ2lmcmUxIE51bWFydWxEZUNpZnJlIHByb2RfayBzdW1hMzcgUHJvZHVzQ2lmcmVJbXBhcmUgc3VtYV9wcmVmaXhlX3BhcmUgc3VtYV9wcmVmaXhlIFN1bWEgQ2lmcmVsb3IgU3VtQ250MyBkaWZNaW4gTW/ImUNyxINjaXVuIGNhbGNQYXJJbXBhciBjYXN0aWcgU3VtQ250MiBTdW1DbnQxIG5fU3VtYSBleHBvTiBwZXJlY2hpcGFyZSBjb3VudF9jMiBzdW1hX2MyIFN1bWFQYXRyYXRlMSBTdW1hQ3VidXJpIFN1bWFQYXRyYXRlIEV4cHJlc2llNSBFeHByZXNpZSBQcm9kUGFyZSBQcm9kUFAgUHJvZEltcGFyZSBBZmlzRmFjdG9yaWFsZSBGYWN0b3JpYWwgRXhwcmVzaWU0IFN1bWEzY2lmcmUgRXhwcmVzaWUzIFByb2R1c01heGltZSBTdW1hX0JfTnVtZXJlIE11bHRpbWkxIEludGVyY2xhc2FyZSB2YXMgQUYgU2FnZWF0YTEgRXhjdXJzaWUwIEludGFsbmlyZSBuclN1bUNpZk1heCA1bnVtZXJlIEN1bXBhcmF0dXJpMiBDdW1wYXJhdHVyaTEgdmVzZWxUcmkgZ29nb3NpIGN1bG9yaTQgbnVtZXJlMjggRWxldmlTaUJhbmNpIHNpbl9jb3Mgc3VtYWNpZnBlcm0gc2NoaW1iYXJlY2lmcmUgY291bnRtb2QxMCByb21iIERpc2MgU2ZlcmEgcHJpbWFjaWZyYWFwYXJ0aWl6ZWNpbWFsZSBrc2lyMSBtZWRpYV9nZW9tZXRyaWNhIGNpZmltcCBOdW1hcjEgUGFyYTEgTnVtZXJlUGlyYW1pZGFsZSBDdWIgUGVyZmVjdCBBZmlzYXJlTnVtZXJlUGFyZSBQcm9kTnIgcHJpZXRlbmUxIHBkaWYgbmF2ZSBwaW4gbHVtaW5pMSBNYXJpbzEgVHJhc2V1MiBoYXJkX3ByaW1lIGhpYnJpZCBUcmVwdGUgRGVjaW1hbENvbnZlcnRlciBNaW5QYWwgTG93TWVtMSBGYXN0LWZvb2QxIE1heGltIE1heGltUGFyIE1heEFuZEFwIFByaW1hQ2lmcmFNaW5pbWEgTWluaW1Qb3ppdGl2ZSBNaW5QbHVzTWF4IFN1bU1heE1pbiBuX21pbmltIGxpdmFkYTIgUGFpbnQgTWFycyBQcm9kdXNYWEwgU3VtYVhMIFBpZXNlIEV4cHJlc2llMiBTbm9yb2NvcyBTdW1hUGFyZSBTdW1hWFhMIEludGVydmFsZTYgU2VjdkVnYWxlMSBzaXJfbXVudGUgRXJhdG9zdGVuZTAgam9jMjAyMCBjYXRlIEVyYXRvc3RlbmUgQWNvcGVyaXJlIGNpb2NvbGF0YTEgbl9tYXhpbSBmb3RvMSBQaXJhbWlkYTEgUGlyYW1pZGEgUGF0cmF0IFBlcmZlY3QgQWZpc2FyZVB1dGVyaSBuWmVybyBMb2cgUG93ZXIgbWVkaWVfcGF0cmF0aWNhIG1lZGllX2FybW9uaWNhIHAxMCBOZXZyaWNvcyBUcml1bmdoaXVyaTEgU2Vjdk1heFZhbCBtYXhpbTMgbnJjaWYgbWluaWNhbGMgRHJlYXB0YSB0cml1bmdoaSBVMlBhcmUgVTJJbXBhcmUgQ2FsY3VsYXRvciBtZWxjIGNhbGN1bCBwYXRyYXRQZXJmZWN0IDJsYW4gOWxhbiBtYXhpbTIgQ2FuYWRhIGJpc2VjdCBTZW1uMSBMYXppUFAgU2VtbiB1cm0wMCBDaWZFZ2FsZSBzdW0gVXBwZXJjYXNlIEFmQ2FyIE51bWFyIHN1bWFjaWZyZTIgc3VtYXBhdHJhdGVjaWZyZSBzdW1jaWYgQ3VydGUgZHJlcHR1bmdoaSBjdWIgVW5naGl1cmkgQWRpYWNlbnRlIHVsdGltYWNpZnJhYXBhcnRpaWludHJlZ2kgcmFkaWNhbDEgcmFkaWNhbCBhMTYgY2lmcmUgUGlzaWNpIG1heG1pbiBTdW1lR2F1c3NEZVN1bWVHYXVzcyBTYWx1dCBUYWlldHVyaSBBbGJpbmEgU3VtYSBHYXVzcyBCdWxkbyBjbGFzZSBDb3VudFNlcU1hdGNoIHBlcmVjaGlOIEFmaXNhcmVOdW1lcmVJbXBhcmUxIEFmaXNhcmVOdW1lcmVJbXBhcmUgQWZpc2FyZU51bWVyZVBhcmUyIEFmaXNhcmVOdW1lcmUyIGFmaXNhcmVfTTEgYWZpc2FyZV9NMiBBZmlzYXJlTnVtZXJlMSBBZmlzYXJlTnVtZXJlIENhdGVQYXJlIGx1bmEgbWluaW0zIFZhcnN0ZSBjb3BpaSBwYXJlX2ltcGFyZSBDb25jdXJzMSBJbnRlcnZhbDIgTm90YSBTdGljbGUgbWF4MiBQYXJpdGF0ZSBJbnZlcnRlZENvbG9yIFRyZW4gSmFwb25leiBwaWNpb2FyZSBMYXppIE1hcnRlMiBDdW1wYXJhdHVyaSB0cmlwbHVsIENhbWlvYW5lIFBhcmMyIEFuaW1hbGUgQ29waWkyIEdsb2J1cmkgdWNpdiBhc2lpIHNjYWRlcmUyIFVyYXJlIE1hcnRlMyBNYXJ0ZTEgc3VtMDAgc2FiYyBUZWF0cnUgcHJvZHVzMiBTdW1hSW5TZWN2IGd1c3RhcmUgU2VjdlN1bU1heCBwc2V1ZG9jbXAHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHIAdHZW5NYXQ2IENoZW5hciBOclBhcmUgVmVjaW5pUGFyaSB2YXJmdXJpOSBHZW5NYXQzMSBOckxpcHNhMiBjaWZyYXplY21heCBPZ2xQUCBOdW1lcmUxMiBOdW1hcmFyZSBPZ2xpbmRpdDMgR2VuTWF0MjEgTnVtZXJlNiBHZW5NYXQ4IEdlbk1hdDMgR2VuTWF0MSBOdW1lcmUxIFNlY3ZLIE1lbW9yeTAwMSBTdW1hUGFyZTMgQ29sRWdhbGUgR2VuTWF0MjYgUHJvZ3Jlc2llMiBDaWZyZU9yZDEgWm9uYSBNYXRyaWNlNiBNYXRyaWNlIE1pbkNvbHMxIFN1bUNvbE1heCBTcGlyYWxhIFNlcnB1aXJlIE51bWVyZTggTWF4Q2lmIE1pbkNvbHMgWm9uYTEgT3JkTGluIEdlbk1hdDIgTWF0cmljZTE5IE1hdHJpeENoZXNzIFNvcnRNYXRyaXhMaW5Db2wgR2VuTWF0NCBTdW1FbFBhcmUgTWF0cml4U3FyIFpvbmUxIExpbkNvbEVnYWxlIE1hdFNpbTEgRG9kZWwgTWF0U2ltIERpYWdvbmFsZTEgQ21tZGNTdW0gWm9uYTQgbWF4X3BhdHJhdCBEaWFnb25hbGUgTWluQ29sczIgQ2lmRnJlY3YgQ2lmcmVPcmQgR2VuTWF0NSBBZmlzYXJlMSBsYWNvbSBDaGVuYXIxIENoZW5hcjIgQ250Q29sb2FuZSBDbnRMaW5paSBNYXhBcDEgTWF4QXAgTWF0cmljZTEwIFBlcm1Db2wgU3VtYUxpbmlpMSBOclByaW1lIFN1bWFMaW5paSBTdW1hUGFyZTIgTnVtYXJhcmU4IGlubG9jdWlyZSBTb3J0U0QgSW5hbHRpbWkgc29ydE1pbk1heCBQcmltTWF4TWluIFN1bURpdiBPZ2xpbmRpdDQgUGFyZVNvcnQgU29ydGFyZSBQZXJtQ2lyYyBhY2VlYXNpX3Bhcml0YXRlIFNvcnQyIEhhbGZTb3J0MiBJbnRlcmNsYXNhcmUyIEhhbGZTb3J0IEludGVyY2xhc2FyZTEgU29ydFBJRSBLU29ydCBTb3J0Q2lmIFNvcnRDaWYyIENpZkluaXQgSW50ZXJjbGFzYXJlIFVuaWNlIFNvcnRNYXggQXJoaXRlY3R1cmEgaW5zZXJhcmVJbmFpbnRlIFNvcnQxMCBPcmRvbmFyZSBTb3J0UHJpbWUgaW5zZXJhcmVEdXBhIGluc2VyYXJlMyBzdGVyZ2VyZTEgc3RlcmdlcmUyIHN0ZXJnZXJlIFN1bU5vdE1pbk1heCBTdGVyZ2VyZV9FbGVtZW50IExhemlQUCBDYWxjdWxhdG9yIE1heE1pbjEgQ29uc3RyMSBDb25zdHIgTnVtYXJhcmU0IENvbnN0cjMgTmljZU51bWJlcnMgUHJvZHVzTWF4aW1lIE1vyJlDcsSDY2l1biBwMTBfMTAgTWF4aW1QYXIgc2lybWF4aW0gVmVjaW5pIE51bWFyYXJlNyBQcmltYUNpZnJhTWluaW1hIEV4cHJlc2llNSBBZmlzRmFjdG9yaWFsZSBJbmNDaWZQYXJlIENpZnJlMiBDaWZyYU1heGltYTIgZXhwYXRyIFByaW1hIGNpZnJhIHBwZHAgRGl2aXpvcmk2IFN1bWUgSW50ZXJ2YWwzIFBhbFhYTCBQYXJlT3Jkb25hdGUgVmVyaWZFZ2FsZSBDb25zdHIyIE51bWFyYXJlU0QgTnVtYXJhcmVEaXYgUHJlbHVjcmFyaSBjaWZyZSBpbnNlcmFyZSBOdW1hcmFyZTUgOWxhbiBDaWZyZTIwIENpZnJlMTcgQ2lmcmUyMSBFYXN5UG93IE51bWFyYXJlMiBOdW1hcmFyZVBlcmVjaGkxIE51bWFyYXJlUGVyZWNoaTIgTnVtYXJhcmVQSUUgTnVtYXJhcmUzIFZlcmlmaWNhcmVPcmRvbmF0IFZlcmlmUGFyaXRhdGUxIFZlcmlmUGFyaXRhdGUyIEVnYWxlT2dsaW5kaXQgQU1NIFN1bWEyIHB2IEFmaXNhcmUgSW5sb2N1aXJlNiBBbHRlcm5hbnRhIFZlcmlmTXVsdGlwbHUgSW5sb2N1aXJlNSBQYXJpdGF0ZTEgTWluTWF4MCBBZmlzYXJlTWluTWF4IFBvek1pbk1heCBOdW1hcmFyZTYgU3VtRGl2T2dsIEFmaXNhcmUwIFZlcmlmTnJQYXJDaWZyZSBFeGlzdGFQcmltZSBFeGlzdGFJbXBhcmUgVmVyaWZQYXJlIExpcHNhIDJwcmltIENpZk1heE1pbiBjaWZtaWQgQ2lmcmFJbXBhcmFNYXhpbWEgcHJvZHVzcHJpbWVsZWRvdWFjaWZyZSBQc2V1ZG9QZXJmZWN0IG5fU3VtYSBtYXhpbTIgTnVtYXJ1bCBkZSBkaXZpem9yaSBtYXhpbTMgc3VtX2NvbnNfaW1wYXJlIDNtaW5pbWUgMm1heGltIENNTURDX0NNTU1DIFVsdGltYUNpZnJhUGFyYSBjaWZwYXJjaWZpbXAgdmVzZWxDaWZyYSBjaWZtYXhpbXAgQ2lmQmluIENpZnJhayBCdW5lIE51bWFyUGVyZmVjdCBNYXhBbmRBcCBTdW1hUGF0cmF0ZTEgU3VtYUN1YnVyaSBPZ2xpbmRpdGVfSVggQ2lmcmUxNiBVcm1hdG9ydWwgcHJpbSBudW1lcmVzIExvZyBwZXJlY2hpcGFyZSBQcmltZTMgUHJpbWUyIFByaW1lSW50cmVFbGUxIHZhcyBtaW5neCBQcm9kUFAgU3VtYVBhdHJhdGUgY2FsY3VsIFZlcmlmUHJpbSBjbW1jcCBwcm9kX3BpIGNtbWsgTWF4RGl2SyBNaW4yQ2lmIE9nbGluZGl0IGNpZnJlMjMgc3VtYV9wcmVmaXhlX3BhcmUgTnVtYXJ1bCBEaXZpem9yaWxvciBQYXJpIENtbWRjNiBQcmltZUludHJlRWxlIENNTU1DIENNTURDIHZlcm5yaW1wZGl2IFByaWV0ZW5lIHN1bWFfcHJlZml4ZSBTdW1hIERpdml6b3JpbG9yIFBhcmkgU3VtYSBEaXZpem9yaSBtYXgzY2lmIHByb2RfayBNYXhpbSBuX21pbmltIG5fbWF4aW0gYWJjZCBzdGVyZ2VaZXJvdXJpIFRpbXAgRWxpbUNpZiB0cml1bmdoaSBjaWZtYXgzIG5yY2lmIEN1YiBQZXJmZWN0IEV4cHJlc2llMyBzdW1jaWZucmNpZiBleHBvTiBTdW1DbnQzIFN1bWEzY2lmcmUgRXhwcmVzaWUgUHJvZEltcGFyZSBQcm9kUGFyZSBVbHRpbXVsUGFyIE51bWVyZSBBY2VsYXNpTnVtYXIgTnVtYXJ1bERlQ2lmcmUxIFN1bWExIFUySW1wYXJlIFUyUGFyZSBuclN1bUNpZk1heCBwYXRyYXRQZXJmZWN0IEV4cHJlc2llMiBzY2hpbWJhcmVjaWZyZSB1bHRpbWFjaWZyYWFwYXJ0aWlpbnRyZWdpIE1pbmltUG96aXRpdmUgQWZDYXIgRGl2aXpvcmlpIE9nbGluZGl0dWx1aSBDaWZyZUNvbXVuZSBTdW1DbnQyIG1lZGllIENpZkRpdiBjb3VudG1vZDEwIE1pblBsdXNNYXggY291bnRfYzIgU3VtQ250MSBzdW1hX2MyIENhbmFkYSBDaWZyYU1heGltYSBOdW1hcnVsRGVDaWZyZSBzdW1hMzcgUHJvZHVzQ2lmcmVJbXBhcmUgcGFyaXRhdGVfOSBTdW1hIFN1bWFQYXJlMSBkcmVwdHVuZ2hpIHJvbWIgc3VtYXBhdHJhdGVjaWZyZSBGYWN0b3JpYWwgU3VtYVBhcmUgQ2F0ZUltcGFyZSBjdWIgRGlzYyBTdW1NYXhNaW4gbWluaWNhbGMgU3VtYSBHYXVzcyBBbGJpbmEgQWZpc2FyZU51bWVyZUltcGFyZTEgVW5naGl1cmkgQWRpYWNlbnRlIHJhZGljYWwxIFRhaWV0dXJpIHN1bWFfbiBuWmVybyBTdW1hIENpZnJlbG9yIFBvd2VyIGJpc2VjdCBTZW1uMSBQdXRlcmlsZUx1aU4gUGlyYW1pZGExIFBpcmFtaWRhIEFmaXNhcmVQdXRlcmkgUGF0cmF0IFBlcmZlY3QgQ2lmRWdhbGUgQ3VtcGFyYXR1cmkxIGx1bmEgU2VtbiBwMTAgdXJtMDAgQ3VtcGFyYXR1cmkyIE1pbmNpdW5hIENhdGVQYXJlIG1lZGllX2FybW9uaWNhIG1lZGlhX2dlb21ldHJpY2EgbWF4bWluIEFmaXNhcmVOdW1lcmVJbXBhcmUgQWZpc2FyZU51bWVyZVBhcmUyIEFmaXNhcmVOdW1lcmVQYXJlIEFmaXNhcmVOdW1lcmUyIGFmaXNhcmVfTTEgYWZpc2FyZV9NMiBBZmlzYXJlTnVtZXJlMSBBZmlzYXJlTnVtZXJlIGNpZmltcCBWYXJzdGUgY29waWkgcGFyZV9pbXBhcmUgbWluaW0zIE5vdGEgU3RpY2xlIG1heDIgUGFyaXRhdGUgc2FiYyBDdW1wYXJhdHVyaSBNYXJ0ZTEgdHJpcGx1bCBDYW1pb2FuZSBQYXJjMiBBbmltYWxlIENvcGlpMiBHbG9idXJpIHVjaXYgc2NhZGVyZTIgQ29uY3VyczEgSW50ZXJ2YWwyIFVwcGVyY2FzZSBzdW0gTnVtYXIxIE51bWFyIHN1bWFjaWZyZTIgc3VtY2lmIEN1cnRlIHJhZGljYWwgYTE2IGNpZnJlIFBpc2ljaSBJbnZlcnRlZENvbG9yIFNhbHV0IFRyZW4gSmFwb25leiBwaWNpb2FyZSBMYXppIE1hcnRlMyBNYXJ0ZTIgYXNpaSBVcmFyZSBzdW0wMAcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcKBw==
VerifOrd VerifDiferite VerifEgale Limite AfisareDivizoriComuni prod_pi Plopi Resturi GenMat GenMat6 CifreZecimale Formula1 Coada2 Zmeu balaur PatratMagic5 Timp1 Bisectoare1 Inaltimi2 Multime Gauss expatr Varsta tunel2 pal ProdMax Cruce cate3cifre paralele1 Cosuri Triunghi5 GenMat16 GenMat15 GenMat14 GenMat13 GenMat12 GenMat11 GenMat10 GenMat8 MChenar Dodel max_patrat GenMat5 GenMat4 GenMat3 GenMat2 MaxAp Matrice10 OrdLin GenMat1 PermCol SecvMax HalfSort2 NrPrime SumaLinii1 SumaLinii SumaPare2 Numarare8 inlocuire SortSD Inaltimi PrimMaxMin SumDiv Oglindit4 Sortare cmmdc5 Furnica1 Forta Perechi sum_max9 sum_min9 ParImpar2 Sume2 ks Deal palindrom4 OZN Triunghiuri2 Permutare maxsim PermCirc PalXXL Interval3 Sume Divizori6 ppdp Prima cifra Cifre2 IncCifPare Vecini sirmaxim p10_10 Constr3 Constr1 MaxMin1 stergere stergere2 inserare3 SortPrime Sort10 Arhitectura SortMax SumaPare1 paritate_9 SumNotMinMax AXYZ Lasere Schi Compar Patrat2 Suma Divizorilor Pari Prietene cifre23 tabel Grupe CifraMaxima2 Oglindit3 Prime2 Prime3 Urmatorul prim Cifre16 Oglindite_IX Bune Cifrak CifBin veselCifra CMMDC_CMMMC 2maxim 3minime EgaleOglindit VerifParitate2 VerifParitate1 VerificareOrdonat NumararePerechi2 Constr2 NumararePerechi1 Cifre21 Cifre17 Cifre20 Numarare5 NumarareDiv NumarareSD Cladiri1 Macara EasyPow Templu Secvente2 AMM dreptc TortO sum_cons_impare PseudoPerfect cifmid CifMaxMin VerifPare ExistaImpare ExistaPrime VerifNrParCifre SumDivOgl Inlocuire5 VerifMultiplu Alternanta SecvK Gropi Prajituri afise TerenCasa_low Chenar Diagonale1 Diagonale Covoare Eroziune Spirala fibo0 Fibonacci Generalizat Fibonacci1 Numere1 CifFrecv Eratostene2 CifreOrd PareImpare Unice Cautare Binara Cirese1 Diff2dArrays PareSort HalfSort sortMinMax Ordonare inserareInainte inserareDupa inserare stergere1 Stergere_Element ParImpar Constr Numarare7 Inlocuire2 Aparitii2 produsprimeledouacifre Suma2 Numarare2 vesel4 vernrimpdiv Suma Lipsa Paritate1 VerifPrim Teren Maria distanta_maxima inlocuire_max Transf Numere6 ElimCif Control Prelucrari cifre Min2Cif MaxDivK Timp NumarPerfect Divizori7 Ambuscada Tan nrdiv1 colina Buletin Cercuri cifmax3 SumProd Suma Divizorilor Impari Numarul Divizorilor Pari Divizorii Oglinditului Numarul de divizori Suma Divizori CifreComune medie CifDiv Suma1 isoscel AcelasiNumar UltimulPar ProdusMaxim Majoritar UltimeleImpare Factorial3 Numere14 sumprodmax3 2prim PozMinMax Inlocuire6 egale FiboVerif AfisareMinMax Numarare6 MinMax0 Afisare1 Afisare Afisare0 Bomboane1 CateImpare suma_n Numere PuterileLuiN Minciuna Fibonacci Aparitii UltimaCifraPara cifparcifimp Oglindit sumcifnrcif cmmk mingx CifraImparaMaxima NiceNumbers cifmaximp cmmcp stergeZerouri max3cif CifraMaxima NumarulDeCifre1 NumarulDeCifre prod_k suma37 ProdusCifreImpare suma_prefixe_pare suma_prefixe Suma Cifrelor SumCnt3 difMin MoșCrăciun calcParImpar castig SumCnt2 SumCnt1 n_Suma expoN perechipare count_c2 suma_c2 SumaPatrate1 SumaCuburi SumaPatrate Expresie5 Expresie ProdPare ProdPP ProdImpare AfisFactoriale Factorial Expresie4 Suma3cifre Expresie3 ProdusMaxime Suma_B_Numere Multimi1 Interclasare vas AF Sageata1 Excursie0 Intalnire nrSumCifMax 5numere Cumparaturi2 Cumparaturi1 veselTri gogosi culori4 numere28 EleviSiBanci sin_cos sumacifperm schimbarecifre countmod10 romb Disc Sfera primacifraapartiizecimale ksir1 media_geometrica cifimp Numar1 Para1 NumerePiramidale Cub Perfect AfisareNumerePare ProdNr prietene1 pdif nave pin lumini1 Mario1 Traseu2 hard_prime hibrid Trepte DecimalConverter MinPal LowMem1 Fast-food1 Maxim MaximPar MaxAndAp PrimaCifraMinima MinimPozitive MinPlusMax SumMaxMin n_minim livada2 Paint Mars ProdusXXL SumaXL Piese Expresie2 Snorocos SumaPare SumaXXL Intervale6 SecvEgale1 sir_munte Eratostene0 joc2020 cate Eratostene Acoperire ciocolata1 n_maxim foto1 Piramida1 Piramida Patrat Perfect AfisarePuteri nZero Log Power medie_patratica medie_armonica p10 Nevricos Triunghiuri1 SecvMaxVal maxim3 nrcif minicalc Dreapta triunghi U2Pare U2Impare Calculator melc calcul patratPerfect 2lan 9lan maxim2 Canada bisect Semn1 LaziPP Semn urm00 CifEgale sum Uppercase AfCar Numar sumacifre2 sumapatratecifre sumcif Curte dreptunghi cub Unghiuri Adiacente ultimacifraapartiiintregi radical1 radical a16 cifre Pisici maxmin SumeGaussDeSumeGauss Salut Taieturi Albina Suma Gauss Buldo clase CountSeqMatch perechiN AfisareNumereImpare1 AfisareNumereImpare AfisareNumerePare2 AfisareNumere2 afisare_M1 afisare_M2 AfisareNumere1 AfisareNumere CatePare luna minim3 Varste copii pare_impare Concurs1 Interval2 Nota Sticle max2 Paritate InvertedColor Tren Japonez picioare Lazi Marte2 Cumparaturi triplul Camioane Parc2 Animale Copii2 Globuri uciv asii scadere2 Urare Marte3 Marte1 sum00 sabc Teatru produs2 SumaInSecv gustare SecvSumMax pseudocmp GenMat6 Chenar NrPare VeciniPari varfuri9 GenMat31 NrLipsa2 cifrazecmax OglPP Numere12 Numarare Oglindit3 GenMat21 Numere6 GenMat8 GenMat3 GenMat1 Numere1 SecvK Memory001 SumaPare3 ColEgale GenMat26 Progresie2 CifreOrd1 Zona Matrice6 Matrice MinCols1 SumColMax Spirala Serpuire Numere8 MaxCif MinCols Zona1 OrdLin GenMat2 Matrice19 MatrixChess SortMatrixLinCol GenMat4 SumElPare MatrixSqr Zone1 LinColEgale MatSim1 Dodel MatSim Diagonale1 CmmdcSum Zona4 max_patrat Diagonale MinCols2 CifFrecv CifreOrd GenMat5 Afisare1 lacom Chenar1 Chenar2 CntColoane CntLinii MaxAp1 MaxAp Matrice10 PermCol SumaLinii1 NrPrime SumaLinii SumaPare2 Numarare8 inlocuire SortSD Inaltimi sortMinMax PrimMaxMin SumDiv Oglindit4 PareSort Sortare PermCirc aceeasi_paritate Sort2 HalfSort2 Interclasare2 HalfSort Interclasare1 SortPIE KSort SortCif SortCif2 CifInit Interclasare Unice SortMax Arhitectura inserareInainte Sort10 Ordonare SortPrime inserareDupa inserare3 stergere1 stergere2 stergere SumNotMinMax Stergere_Element LaziPP Calculator MaxMin1 Constr1 Constr Numarare4 Constr3 NiceNumbers ProdusMaxime MoșCrăciun p10_10 MaximPar sirmaxim Vecini Numarare7 PrimaCifraMinima Expresie5 AfisFactoriale IncCifPare Cifre2 CifraMaxima2 expatr Prima cifra ppdp Divizori6 Sume Interval3 PalXXL PareOrdonate VerifEgale Constr2 NumarareSD NumarareDiv Prelucrari cifre inserare Numarare5 9lan Cifre20 Cifre17 Cifre21 EasyPow Numarare2 NumararePerechi1 NumararePerechi2 NumararePIE Numarare3 VerificareOrdonat VerifParitate1 VerifParitate2 EgaleOglindit AMM Suma2 pv Afisare Inlocuire6 Alternanta VerifMultiplu Inlocuire5 Paritate1 MinMax0 AfisareMinMax PozMinMax Numarare6 SumDivOgl Afisare0 VerifNrParCifre ExistaPrime ExistaImpare VerifPare Lipsa 2prim CifMaxMin cifmid CifraImparaMaxima produsprimeledouacifre PseudoPerfect n_Suma maxim2 Numarul de divizori maxim3 sum_cons_impare 3minime 2maxim CMMDC_CMMMC UltimaCifraPara cifparcifimp veselCifra cifmaximp CifBin Cifrak Bune NumarPerfect MaxAndAp SumaPatrate1 SumaCuburi Oglindite_IX Cifre16 Urmatorul prim numeres Log perechipare Prime3 Prime2 PrimeIntreEle1 vas mingx ProdPP SumaPatrate calcul VerifPrim cmmcp prod_pi cmmk MaxDivK Min2Cif Oglindit cifre23 suma_prefixe_pare Numarul Divizorilor Pari Cmmdc6 PrimeIntreEle CMMMC CMMDC vernrimpdiv Prietene suma_prefixe Suma Divizorilor Pari Suma Divizori max3cif prod_k Maxim n_minim n_maxim abcd stergeZerouri Timp ElimCif triunghi cifmax3 nrcif Cub Perfect Expresie3 sumcifnrcif expoN SumCnt3 Suma3cifre Expresie ProdImpare ProdPare UltimulPar Numere AcelasiNumar NumarulDeCifre1 Suma1 U2Impare U2Pare nrSumCifMax patratPerfect Expresie2 schimbarecifre ultimacifraapartiiintregi MinimPozitive AfCar Divizorii Oglinditului CifreComune SumCnt2 medie CifDiv countmod10 MinPlusMax count_c2 SumCnt1 suma_c2 Canada CifraMaxima NumarulDeCifre suma37 ProdusCifreImpare paritate_9 Suma SumaPare1 dreptunghi romb sumapatratecifre Factorial SumaPare CateImpare cub Disc SumMaxMin minicalc Suma Gauss Albina AfisareNumereImpare1 Unghiuri Adiacente radical1 Taieturi suma_n nZero Suma Cifrelor Power bisect Semn1 PuterileLuiN Piramida1 Piramida AfisarePuteri Patrat Perfect CifEgale Cumparaturi1 luna Semn p10 urm00 Cumparaturi2 Minciuna CatePare medie_armonica media_geometrica maxmin AfisareNumereImpare AfisareNumerePare2 AfisareNumerePare AfisareNumere2 afisare_M1 afisare_M2 AfisareNumere1 AfisareNumere cifimp Varste copii pare_impare minim3 Nota Sticle max2 Paritate sabc Cumparaturi Marte1 triplul Camioane Parc2 Animale Copii2 Globuri uciv scadere2 Concurs1 Interval2 Uppercase sum Numar1 Numar sumacifre2 sumcif Curte radical a16 cifre Pisici InvertedColor Salut Tren Japonez picioare Lazi Marte3 Marte2 asii Urare sum00