fork download
  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #define endl '\n'
  4. #define int long long int
  5. const int MOD = 1000000007;
  6. const int MOD2 = 998244353;
  7. const int INF = LLONG_MAX / 2;
  8. const int MAXN = 100000;
  9. int primes[1000000];
  10.  
  11. /*void seive() {
  12.   fill(primes, primes + 1000000, 1);
  13.   primes[0] = primes[1] = 0;
  14.   for (int i = 2; i * i < 1000000; i++) {
  15.   if (primes[i]) {
  16.   for (int j = i * i; j < 1000000; j += i) {
  17.   primes[j] = 0;
  18.   }
  19.   }
  20.   }
  21. }
  22.  
  23. bool isPrime(int n) {
  24.   if (n <= 1) return false;
  25.   for (int i = 2; i * i <= n; i++) {
  26.   if (n % i == 0) return false;
  27.   }
  28.   return true;
  29. }
  30.  
  31. int gcd(int a, int b) {
  32.   if (a == 0) return b;
  33.   return gcd(b % a, a);
  34. }
  35.  
  36. int power(int a, int b, int mod) {
  37.   int res = 1;
  38.   a %= mod;
  39.   while (b > 0) {
  40.   if (b & 1) res = res * a % mod;
  41.   a = a * a % mod;
  42.   b >>= 1;
  43.   }
  44.   return res;
  45. }
  46.  
  47. // nCr % MOD for n < MOD
  48. int nCrModP(int n, int r) {
  49.   if (r > n) return 0;
  50.   if (r == 0 || r == n) return 1;
  51.  
  52.   int numerator = 1, denominator = 1;
  53.   for (int i = 0; i < r; i++) {
  54.   numerator = (numerator * (n - i)) % MOD;
  55.   denominator = (denominator * (i + 1)) % MOD;
  56.   }
  57.   return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
  58. }
  59.  
  60. // Lucas's Theorem
  61. int lucas(int n, int r) {
  62.   if (r == 0) return 1;
  63.   return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
  64. }*/
  65. void solve() {
  66. int n,k;
  67. cin>>n>>k;
  68. int A[n];
  69. for(int i = 0 ; i<n ; i++){
  70. cin>>A[i];
  71. }
  72. map<int,int>m;
  73. int prefix[n];
  74. prefix[0] = A[0];
  75. for(int i = 1 ; i<n ; i++){
  76. prefix[i] = A[i]+prefix[i-1];
  77. }
  78. int maxi = LLONG_MIN;
  79. for(int i = 0 ; i<n ; i++){
  80. if(m.find(A[i]-k)!=m.end()){
  81. if(i==0){
  82. maxi = max(maxi,prefix[i]);
  83. }
  84. else{
  85. maxi = max(maxi,(prefix[i]-prefix[m[A[i]-k]-1]));
  86. }
  87. }
  88. else{
  89. if(m.find(A[i])==m.end()){
  90. m[A[i]] = i;
  91. }
  92. else{
  93. if(prefix[i]<prefix[m[A[i]]]){
  94. m[A[i]] = i;
  95. }
  96. }
  97. }
  98. }
  99. cout<<maxi<<endl;
  100. }
  101. signed main() {
  102. ios::sync_with_stdio(false); cin.tie(NULL);
  103. //int t;
  104. //cin >> t;
  105. //while (t--) {
  106. solve();
  107. //}
  108. return 0;
  109. }
  110.  
Success #stdin #stdout 0.01s 5284KB
stdin
8 5
1 5 -5 8 8 8 10 15
stdout
34