#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 998244353;
// Fast modular exponentiation.
ll modexp(ll base, ll exp, ll mod) {
ll result = 1;
base %= mod;
while(exp > 0){
if(exp & 1)
result = (result * base) % mod;
base = (base * base) % mod;
exp >>= 1;
}
return result;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
// Precompute factorials and inverse factorials up to the maximum sum possible.
// The maximum total sum over any test case is at most 5e5.
int maxN = 500000;
vector<ll> fact(maxN+1), invfact(maxN+1);
fact[0] = 1;
for (int i = 1; i <= maxN; i++){
fact[i] = fact[i-1] * i % MOD;
}
invfact[maxN] = modexp(fact[maxN], MOD-2, MOD);
for (int i = maxN; i >= 1; i--){
invfact[i-1] = invfact[i] * i % MOD;
}
while(t--){
vector<int> c(26);
int total = 0;
for (int i = 0; i < 26; i++){
cin >> c[i];
total += c[i];
}
int oddCount = (total + 1) / 2; // number of odd positions (1-indexed)
int evenCount = total / 2; // number of even positions
// DP to count valid partitions: dp[j] = number of ways to choose a subset (from letters with c > 0)
// such that the sum of chosen counts equals j.
vector<ll> dp(total+1, 0), newdp(total+1, 0);
dp[0] = 1;
for (int i = 0; i < 26; i++){
if(c[i] == 0) continue; // skip letters with zero occurrences
int x = c[i];
fill(newdp.begin(), newdp.end(), 0);
for (int j = 0; j <= total; j++){
if(dp[j] != 0){
// Option 1: assign letter i to even positions (sum remains j)
newdp[j] = (newdp[j] + dp[j]) % MOD;
// Option 2: assign letter i to odd positions (sum increases by x)
if(j + x <= total)
newdp[j + x] = (newdp[j + x] + dp[j]) % MOD;
}
}
dp.swap(newdp);
}
ll waysToAssign = dp[oddCount] % MOD;
// The number of arrangements once the assignment is fixed is:
// (oddCount)! * (evenCount)! divided by the product of factorials of counts of each letter.
ll arrangement = (fact[oddCount] * fact[evenCount]) % MOD;
for (int i = 0; i < 26; i++){
arrangement = (arrangement * invfact[c[i]]) % MOD;
}
ll ans = (waysToAssign * arrangement) % MOD;
cout << ans % MOD << "\n";
}
return 0;
}