fork download
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. typedef long long ll;
  5. const int MOD = 998244353;
  6.  
  7. // Fast modular exponentiation.
  8. ll modexp(ll base, ll exp, ll mod) {
  9. ll result = 1;
  10. base %= mod;
  11. while(exp > 0){
  12. if(exp & 1)
  13. result = (result * base) % mod;
  14. base = (base * base) % mod;
  15. exp >>= 1;
  16. }
  17. return result;
  18. }
  19.  
  20. int main(){
  21. ios::sync_with_stdio(false);
  22. cin.tie(nullptr);
  23.  
  24. int t;
  25. cin >> t;
  26.  
  27. // Precompute factorials and inverse factorials up to the maximum sum possible.
  28. // The maximum total sum over any test case is at most 5e5.
  29. int maxN = 500000;
  30. vector<ll> fact(maxN+1), invfact(maxN+1);
  31. fact[0] = 1;
  32. for (int i = 1; i <= maxN; i++){
  33. fact[i] = fact[i-1] * i % MOD;
  34. }
  35. invfact[maxN] = modexp(fact[maxN], MOD-2, MOD);
  36. for (int i = maxN; i >= 1; i--){
  37. invfact[i-1] = invfact[i] * i % MOD;
  38. }
  39.  
  40. while(t--){
  41. vector<int> c(26);
  42. int total = 0;
  43. for (int i = 0; i < 26; i++){
  44. cin >> c[i];
  45. total += c[i];
  46. }
  47. int oddCount = (total + 1) / 2; // number of odd positions (1-indexed)
  48. int evenCount = total / 2; // number of even positions
  49.  
  50. // DP to count valid partitions: dp[j] = number of ways to choose a subset (from letters with c > 0)
  51. // such that the sum of chosen counts equals j.
  52. vector<ll> dp(total+1, 0), newdp(total+1, 0);
  53. dp[0] = 1;
  54. for (int i = 0; i < 26; i++){
  55. if(c[i] == 0) continue; // skip letters with zero occurrences
  56. int x = c[i];
  57. fill(newdp.begin(), newdp.end(), 0);
  58. for (int j = 0; j <= total; j++){
  59. if(dp[j] != 0){
  60. // Option 1: assign letter i to even positions (sum remains j)
  61. newdp[j] = (newdp[j] + dp[j]) % MOD;
  62. // Option 2: assign letter i to odd positions (sum increases by x)
  63. if(j + x <= total)
  64. newdp[j + x] = (newdp[j + x] + dp[j]) % MOD;
  65. }
  66. }
  67. dp.swap(newdp);
  68. }
  69.  
  70. ll waysToAssign = dp[oddCount] % MOD;
  71.  
  72. // The number of arrangements once the assignment is fixed is:
  73. // (oddCount)! * (evenCount)! divided by the product of factorials of counts of each letter.
  74. ll arrangement = (fact[oddCount] * fact[evenCount]) % MOD;
  75. for (int i = 0; i < 26; i++){
  76. arrangement = (arrangement * invfact[c[i]]) % MOD;
  77. }
  78.  
  79. ll ans = (waysToAssign * arrangement) % MOD;
  80. cout << ans % MOD << "\n";
  81. }
  82. return 0;
  83. }
  84.  
Success #stdin #stdout 0.03s 18356KB
stdin
5
2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 233527 233827
stdout
4
960
0
1
789493841