fork download
  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #define endl '\n'
  4. #define int long long int
  5. const int MOD = 1000000007;
  6. const int MOD2 = 998244353;
  7. const int INF = LLONG_MAX / 2;
  8. const int MAXN = 100000;
  9. int primes[1000000];
  10.  
  11. /*void seive() {
  12.   fill(primes, primes + 1000000, 1);
  13.   primes[0] = primes[1] = 0;
  14.   for (int i = 2; i * i < 1000000; i++) {
  15.   if (primes[i]) {
  16.   for (int j = i * i; j < 1000000; j += i) {
  17.   primes[j] = 0;
  18.   }
  19.   }
  20.   }
  21. }
  22.  
  23. bool isPrime(int n) {
  24.   if (n <= 1) return false;
  25.   for (int i = 2; i * i <= n; i++) {
  26.   if (n % i == 0) return false;
  27.   }
  28.   return true;
  29. }
  30.  
  31. int gcd(int a, int b) {
  32.   if (a == 0) return b;
  33.   return gcd(b % a, a);
  34. }
  35.  
  36. int power(int a, int b, int mod) {
  37.   int res = 1;
  38.   a %= mod;
  39.   while (b > 0) {
  40.   if (b & 1) res = res * a % mod;
  41.   a = a * a % mod;
  42.   b >>= 1;
  43.   }
  44.   return res;
  45. }
  46.  
  47. // nCr % MOD for n < MOD
  48. int nCrModP(int n, int r) {
  49.   if (r > n) return 0;
  50.   if (r == 0 || r == n) return 1;
  51.  
  52.   int numerator = 1, denominator = 1;
  53.   for (int i = 0; i < r; i++) {
  54.   numerator = (numerator * (n - i)) % MOD;
  55.   denominator = (denominator * (i + 1)) % MOD;
  56.   }
  57.   return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
  58. }
  59.  
  60. // Lucas's Theorem
  61. int lucas(int n, int r) {
  62.   if (r == 0) return 1;
  63.   return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
  64. }*/
  65.  
  66. void solve() {
  67. int n,k;
  68. cin>>n>>k;
  69. int A[n];
  70. for(int i = 0 ; i<n ; i++){
  71. cin>>A[i];
  72. }
  73. stack<pair<int,int>>st,st3;
  74. int NGL[n],NGR2[n];
  75. for(int i = 0 ; i<n ; i++){
  76. while(!st.empty() && st.top().first<=A[i]){
  77. st.pop();
  78. }
  79. if(st.empty()){
  80. NGL[i] = -1;
  81. }
  82. else{
  83. NGL[i] = st.top().second;
  84. }
  85. st.push({A[i],i});
  86. }
  87. for(int i = n-1 ; i>=0 ; i--){
  88. while(!st3.empty() && st3.top().first<A[i]){
  89. st3.pop();
  90. }
  91. if(st3.empty()){
  92. NGR2[i] = n;
  93. }
  94. else{
  95. NGR2[i] = st3.top().second;
  96. }
  97. st3.push({A[i],i});
  98. }
  99. int sum = 0;
  100. for(int i = 0 ; i<n ; i++){
  101. if(A[i]==k){
  102. int x = (i-NGL[i]-1);
  103. int y = (NGR2[i]-i-1);
  104. sum += ((x*y)+x+y+1);
  105. }
  106. }
  107. cout<<sum<<endl;
  108. }
  109. signed main() {
  110. ios::sync_with_stdio(false); cin.tie(NULL);
  111. int t;
  112. cin >> t;
  113. while (t--) {
  114. solve();
  115. }
  116. return 0;
  117. }
  118.  
Success #stdin #stdout 0.01s 5316KB
stdin
2
5 3
1 3 2 3 1
8 3
8 2 1 3 4 5 1 10
stdout
12
3